galaxy.models.baseline ====================== .. py:module:: galaxy.models.baseline Classes ------- .. autoapisummary:: galaxy.models.baseline.Baseline Functions --------- .. autoapisummary:: galaxy.models.baseline.load_model Module Contents --------------- .. py:class:: Baseline(num_classes) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool .. py:attribute:: conv1 .. py:attribute:: bn1 .. py:attribute:: conv2 .. py:attribute:: bn2 .. py:attribute:: conv3 .. py:attribute:: bn3 .. py:attribute:: conv4 .. py:attribute:: bn4 .. py:attribute:: global_avg_pool .. py:attribute:: fc .. py:attribute:: dropout .. py:method:: forward(x) .. py:function:: load_model(num_classes=2)