galaxy.util

Utility functions and enumerations for handling datasets and legacy survey data.

Attributes

Classes

DataPart

str(object='') -> str

DataSource

Enumeration of data sources.

DataSurvey

str(object='') -> str

IsCluster

Enumeration for cluster classification.

IsObject

Enumeration for cluster classification.

RedShiftType

str(object='') -> str

SampleName

Enumeration for sample names.

SampleName2

Enumeration for sample names.

MapType

Enumeration for map types.

Functions

inherit_columns(→ pandas.DataFrame)

Ensures the DataFrame has required and optional columns.

read_vizier(→ pandas.DataFrame)

Fetches a catalogue from Vizier and converts it to a pandas DataFrame.

read_vizier_updated(→ pandas.DataFrame)

Fetches a catalogue from Vizier and converts it to a pandas DataFrame.

bar_progress(→ None)

Displays a progress bar for downloads.

to_hms_format(→ str)

Converts a time string to HMS format.

to_dms_format(→ str)

Converts a time string to DMS format.

divide_chunks(→ Generator[List[Any], None, None])

Divides a list into chunks of a specified size.

fits_to_rgb_image(→ torch.Tensor)

Converts a 2-channel tensor to an RGB image tensor.

Module Contents

galaxy.util.PICS_SIZE = 224
class galaxy.util.DataPart

Bases: str, enum.Enum

str(object=’’) -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to ‘utf-8’. errors defaults to ‘strict’.

TRAIN = 'train'
VALIDATE = 'validate'
TEST = 'test'
MC = 'mc'
TEST_SAMPLE = 'test_sample'
OTHERS = 'other'
TO_NORMALIZE = 'normalization_sample'
WISE_TO_NORMALIZE = 'normalize_wise'
ACT_TO_NORMALIZE = 'normalize_act'
class galaxy.util.DataSource

Bases: str, enum.Enum

Enumeration of data sources.

MAP_ACT = 'map_act'
DR5 = 'dr5'
MC = 'mc'
SGA = 'sga'
TYC2 = 'tyc2'
GAIA = 'gaia'
UPC_SZ = 'upc_sz'
SPT_SZ = 'spt_sz'
PSZSPT = 'pszspt'
CCOMPRASS = 'comprass'
SPT2500D = 'spt2500d'
SPTECS = 'sptecs'
SPT100 = 'spt100'
ACT_MCMF = 'act_mcmf'
TEST_SAMPLE = 'test_sample'
RANDOM = 'rand'
RANDOM_BASED = 'rand_based'
class galaxy.util.DataSurvey

Bases: str, enum.Enum

str(object=’’) -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to ‘utf-8’. errors defaults to ‘strict’.

WISE = 'wise'
ACT = 'act'
ARTIFICIAL = 'artificial'
class galaxy.util.IsCluster

Bases: int, enum.Enum

Enumeration for cluster classification.

IS_CLUSTER = 1
NOT_CLUSTER = 0
ANY_OBJECT = 2
class galaxy.util.IsObject

Bases: int, enum.Enum

Enumeration for cluster classification.

UNKNOWN = -2
IS_POINT = -1
IS_CLUSTER = 0
IS_GALAXY = 1
IS_STAR = 2
IS_RANDOM = 3
ANY_OBJECT = 4
galaxy.util.objects_naming: dict
class galaxy.util.RedShiftType

Bases: str, enum.Enum

str(object=’’) -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to ‘utf-8’. errors defaults to ‘strict’.

PHOT = 'phot'
SPEC = 'spec'
class galaxy.util.SampleName

Bases: str, enum.Enum

Enumeration for sample names.

CLUSTER_SMALL = 'cluster_small'
NEGATIVE_SMALL = 'random_small'
TYC2_SMALL = 'tyc2_small'
OTHER = 'other_small'
class galaxy.util.SampleName2

Bases: str, enum.Enum

Enumeration for sample names.

CLUSTER_SMALL = '0_small'
NEGATIVE_SMALL = '1_small'
OTHER_SMALL = '2_small'
galaxy.util.sample_sizes: dict
class galaxy.util.MapType

Bases: str, enum.Enum

Enumeration for map types.

SMALL = 0
BIG = 1
galaxy.util.plot_radius
galaxy.util.sample_sources
galaxy.util.required_columns
galaxy.util.optional_columns
galaxy.util.inherit_columns(frame: pandas.DataFrame) pandas.DataFrame

Ensures the DataFrame has required and optional columns.

Args:

frame (pd.DataFrame): Input DataFrame.

Returns:

pd.DataFrame: DataFrame with required and optional columns ensured.

galaxy.util.read_vizier(catalogue: str) pandas.DataFrame

Fetches a catalogue from Vizier and converts it to a pandas DataFrame.

Args:

catalogue (str): Name or identifier of the catalogue.

Returns:

pd.DataFrame: DataFrame containing the catalogue data.

galaxy.util.read_vizier_updated(catalogue: str, source: DataSource, target: IsCluster, survey: DataSurvey, object_type: IsObject, red_shift_type: RedShiftType | None = None, rename_dict: dict | None = None, row_limit=1000) pandas.DataFrame

Fetches a catalogue from Vizier and converts it to a pandas DataFrame.

Args:

catalogue (str): Name or identifier of the catalogue.

Returns:

pd.DataFrame: DataFrame containing the catalogue data.

galaxy.util.bar_progress(current: int, total: int, width: int = 80) None

Displays a progress bar for downloads.

Args:

current (int): Current number of bytes downloaded. total (int): Total number of bytes to download. width (int, optional): Width of the progress bar. Defaults to 80.

galaxy.util.to_hms_format(time_str: str) str

Converts a time string to HMS format.

Args:

time_str (str): Time string in space-separated format (e.g., “12 34 56”).

Returns:

str: Time string in HMS format (e.g., “12h34m56s”).

galaxy.util.to_dms_format(time_str: str) str

Converts a time string to DMS format.

Args:

time_str (str): Time string in space-separated format (e.g., “12 34 56”).

Returns:

str: Time string in DMS format (e.g., “12d34m56s”).

galaxy.util.divide_chunks(data_list: List[Any], chunk_size: int) Generator[List[Any], None, None]

Divides a list into chunks of a specified size.

Args:

data_list (List[Any]): Input list to divide. chunk_size (int): Size of each chunk.

Yields:

Generator[List[Any], None, None]: Generator yielding list chunks.

galaxy.util.fits_to_rgb_image(tensor: torch.Tensor) torch.Tensor

Converts a 2-channel tensor to an RGB image tensor.

Args:

tensor (torch.Tensor): Input tensor of shape (2, H, W).

Returns:

torch.Tensor: RGB image tensor of shape (3, H, W).

Raises:

ValueError: If the input tensor does not have 2 channels.